BASIS PROPERTIES OF EIGENFUNCTIONS OF THE p-LAPLACIAN

نویسندگان

  • LYONELL BOULTON
  • JAN ČEPIČKA
  • PAVEL DRÁBEK
  • PETR GIRG
  • Carmen C. Chicone
چکیده

For p 12 11 , the eigenfunctions of the non-linear eigenvalue problem for the p-Laplacian on the interval (0, 1) are shown to form a Riesz basis of L2(0, 1) and a Schauder basis of Lq(0, 1) whenever 1 < q < ∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost all eigenfunctions of a rational polygon are uniformly distributed

We consider an orthonormal basis of eigenfunctions of the Dirichlet Laplacian for a rational polygon. The modulus squared of the eigenfunctions defines a sequence of probability measures. We prove that this sequence contains a density-one subsequence that converges to Lebesgue measure. Mathematics Subject Classification (2010). Primary 35P20; Secondary 58J51, 81Q50.

متن کامل

The ∞-eigenvalue Problem and a Problem of Optimal Transportation

ABSTRACT. The so-called eigenvalues and eigenfunctions of the infinite Laplacian ∆∞ are defined through an asymptotic study of that of the usual p-Laplacian ∆p, this brings to a characterization via a non-linear eigenvalue problem for a PDE satisfied in the viscosity sense. In this paper, we obtain an other characterization of the first eigenvalue via a problem of optimal transportation, and re...

متن کامل

The beat of a fuzzy drum : Fuzzy Bessel functions for the disc

The fuzzy disc is a matrix approximation of the functions on a disc which preserves rotational symmetry. In this paper we introduce a basis for the algebra of functions on the fuzzy disc in terms of the eigenfunctions of a properly defined fuzzy Laplacian. In the commutative limit they tend to the eigenfunctions of the ordinary Laplacian on the disc, i.e. Bessel functions of the first kind, thu...

متن کامل

Functions of trigonometric type and bases in Lq

It is shown that, for all p ∈ (1,∞), the eigenfunctions of the Dirichlet problem for the p-Laplacian on [0, 1] form a basis of Lq(0, 1) for all q ∈ (1,∞).

متن کامل

The characterization of eigenfunctions for Laplacian operators

In this paper, we consider the characterization of eigenfunctions for Laplacian operators on some Riemannian manifolds. Firstly we prove that for the space form (M K , gK) with the constant sectional curvature K, the first eigenvalue of Laplacian operator λ1 (M K) is greater than the limit of the first Dirichlet eigenvalue of Laplacian operator λ1 (BK (p, r)). Based on this, we then present a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006